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Statistics of the depth probed by cw measurements of photons in a turbid medium
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Photon migration in a turbid medium has been modeled in many different ways. The motivation for such
modeling is based on technology that can be used to probe potentially diagnostic optical properties of biologi-
cal tissue. Surprisingly, one of the more effective models is also one of the simplest. It is based on statistical
properties of a nearest-neighbor lattice random walk. Here we develop a theory allowing one to calculate the
number of visits by a photon to a given depth, if it is eventually detected at an absorbing surface. This mimics
cw measurements made on biological tissue and is directed towards characterizing the depth reached by
photons injected at the surface. Our development of the theory uses formalism based on the theory of a
continuous-time random walkCTRW). Formally exact results are given in the Fourier-Laplace domain,
which, in turn, are used to generate approximations for parameters of physical interest.
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[. INTRODUCTION theory but they could as well have been found using diffu-
sion theory.

Many forms of optical technology are now being explored The theory developed here deals with experiments in
for potential use in medical diagnosis, because they do nathich photons are injected into tissue at a point, some of
involve the use of potentially hazardous ionizing radiation,which are later reemitted at the tissue interface at another
[1,2]. As an example, Bonner and Nossal proved the feasipoint. Three basic types of experiments are envisioned here:
bility of measuring the number density and rms speed ofl1) The cw experiment, in which a continuous beam of pho-
moving red cellsn vivo by optical method$3]. A somewhat tons enters the tissue, and the intensity of reemitted photons
similar technology has also been investigated with engineeilis measured as a function of distance from the entrance point.
ing applications in mind4]. Since light is multiply scattered (2) Time-gated experiments, in which injecting and detecting
and can be absorbed in a tissue, it is necessary to haveoptodes are kept at a fixed distance apart and the intensity of
theoretical basis with which to translate experimental dataeemitted photons is measured as a function of tifBeFre-
into optical parameters potentially capable of distinguishingqguency modulated experiments, in which a response is mea-
between healthy and diseased states. The most frequensyred as a function of frequency to periodically injected pho-
used of these arg., the transport-corrected scattering co-tons. In each of these the intensity of reemitted light is
efficient andu,, the absorption coefficient. Many types of measured, from which one can derive estimates of the optical
theories have been applied to reducing data from opticgbarametersu, and n,. Each of the three types of experi-
measurements on turbid media. These include detailethents is potentially capable of providing information related
multiple-scattering formalisifb], a variety of forms of trans- to optical parameters hidden in bulk tissue, and each has both
port and diffusion theory6], and most recently the theory of practical advantages and disadvantages. This paper deals
lattice random walk$7,8]. only with the simplest possible case of tissues with homoge-

All biomedical applications that make use of optical neous optical properties. More interesting problems are
methods require the capability of characterizing and controlposed by tissues having different forms of heterogeneity,
ling photon trajectories, insofar as is possible. This is obviparticularly in light of possible imaging applications.
ously desirable in optical imaging applications in which one The average depth calculated [ib2] for the cw experi-
looks for regions that may have anomalous scattering or abment is equivalent to the expected value of a random vari-
sorption propertie§9—11], but it is also true in applications able known as the occupancy of a random wWak. This, in
involving homogeneous media. In many instances it is im+urn, is related to the mathematical notion of local tifhé],
portant to characterize the depth to which photons can perwhich has been used in the context of optical imaging by a
etrate into a medium so as to associate an optical responsenamber of other investigatof46,17. The average value of a
underlying physiology and to remove possible artifacts dugandom variable can only crudely characterize its properties.
to uninteresting inhomogeneities. One descriptive parametérhis suggests the utility of developing a more detailed cal-
that relates to the statistical properties of a photon trajectorgulation able to more accurately quantitate information re-
is the maximum depth to which it penetrates the medium ofated to photon trajectories.
interest. This was first discussed[ifi. A related, but some- In this paper we derive a formally exact theory for the
what more involved, calculation is that of the average depthdistribution of the number of visits to a given depth in a
sampled by a photon in a cw measuremierfi]. Aspects of semi-infinite medium, rather than just its first moment, po-
this theory were experimentally confirmed[ib3]. The cal- tentially allowing us to calculate higher moments for such
culations in both7] and[12] were based on random walk systems. A similar calculation for transillumination experi-
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Ph?;fm Phgut?ﬂ mathematical analysis, they can later be converted to dimen-
sional units byr=rv2/u, where u. is the transport-

corrected scattering coefficient. Positive valueszaforre-

spond to points interior to the medium, the surface of the

medium beingz=0. The coordinates transverse to thaxis

will be labelledx andy. The ranges of the three coordinates

—— N

o o 0 . are Osz=o and —o<Xx, y<o,

o« o e o o s (2) The isotropic random walk that is a model for a pho-
¢ o 0 0 . LRI ton trajectory allows for motion to nearest-neighboring sites
L d AL only, i.e., on a given step the random walker moves from
: : : : : : : : : : : : : : : (x,y,2 to one of the sitesX=1y*+12z*+1), the particular

site being chosen with probability 1/6. This picture cannot

FIG. 1. Schematic diagram of the lattice random model of aaccount for preferential forward scattering, which is impor-
semi-infinite medium with laser injection at a point. The parametertant at very short times, but the isotropic model has been
z measures the distance in integer units into the medium,pasd  shown to be adequate for many experimental applications
the transverse distance along the surface. [8]. Corrections to account for anisotropic scattering can be

accounted for either rigorously using a full transport theory
ments (i.e., transmission through slgbss described else- or possibly by using a more phenomenological theory based
where[18]. Here we consider only the case of cw measure-on the telegrapher’s equation rather than the diffusion equa-
ments made on a semi-infinite medium, which is also thdion. This was originally suggested by Ishimar22], and
model treated if7]. The extension that allows us to deal investigated more recently and in greater detail by Durian
with time-gated experiments will be left for future discus- and Rudnic23].
sion, but is essentially based on the mathematical analysis (3) The time between successive steps is a random vari-
developed in the present paper. able. The probability density that describes this time, desig-

In contrast to the analysis ifl2], which assumed that nated byy(t), is a negative exponential:
steps were made at equally spaced intervals in time, here we
make use of the continuous-time random walk model W) =ke Xt (2.1)
(CTRW) [19,14], which has been shown to simplify a num- ' '
ber of calculations required to elucidate the theory of photon
migration [20]. In the CTRW model the number of steps Where the rate constaktis related to théassumegiconstant
taken at any time is random, as will be seen from the detailegpeed of light in the mediunt, and x; by k=cu . In the
analysis to follow. The present analysis will be restricted toensuing analysis we will make use of the dimensionless time
the case of the cw experiment as [ib2] but can also be 7=kt, which is equivalent to setting=1.
extended to analyze the other experiments mentioned earlier. (4) Absorption in the medium is governed by Beer’s law.
Optical techniques as a whole are widely used to measur€hat is to say, the probability that a random walker survives
meteorological parameters, and similar problems arise iinside the lattice for a dimensionless timewithout being
such application§21]. absorbed is equal to exp@r) where v is expressible in
terms of the experimentally measurable absorption coeffi-
cient u, as the ratiov=pu,/ns .

(5) The planar interface= 0 is comprised only of absorb-

A schematic picture of the model to be analyzed is showring points. A photon reaching the surface from within the
in Fig. 1. Photons are injected into tissue by a laser beantjssue is immediately removed from the system, and at the
idealized as being a line. Since typical penetration depths igrrival instant, is detectable as reemitted light. Because of
tissue are of the order of millimeters, the medium beingthis property the entry point, designated iy is at(0,0,1).
probed is modeled as being a semi-infinite bulk and the skinThis is the equivalent to the assumption customarily made in
or interface, is assumed to be planar. In the course of theidliffusion analyses, that considers the initial positions of pho-
migration photons are randomly scattered by inhomogeneons to be approximately a single scattering length below the
ities within the medium, exemplified by cytoplasmic or- surface in the mediurf24].
ganelles and cell surfaces. Some of the photons may be ab- We will be interested in finding the distribution function
sorbed internally, the remaining ones reaching the interfacéor the total number of times the random walker has visited
where they appear as emitted light. The measurable ligHevel z=Z conditional on its reaching the surface at a point
intensity considered as a function of distance along the surtx,y,0)=(p,0) at timerwherep=(x,y). Our aim is to cal-
face can be shown to contain information about optical propculate the probability that the depthhas been visited ex-
erties of the underlying tissue which is potentially useful foractly k times conditional on the random walker reaching the

Il. DESCRIPTION OF THE MODEL

diagnostic purposdd]. surface at(p,0) at the (dimensionlesstime 7. This condi-
The analysis that follows is based on the following as-tional probability will be denoted by (Z|p,7). The joint
sumptions. probability for visitingz=Z exactlyk timesandreaching the

(1) The internal structure of the medium is replaced by asurface a{p,0) at time 7 will be denoted bw(Z,p,7). The
simple cubic lattice. A site on this lattice will be denoted by conditional probabilityv,(Z|p,7) can be converted to infor-
the vectorr =(x,y,z), where the components of the vector mation about how much time has been spent by the photon
are integers. While these coordinates are convenient for thigajectory at a given depth below the surface.
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Il ANALYSIS [20]. The propagators in Eg§3.1), (3.3), and(3.4) are exact
for the CTRW model, in contrast with the Gaussian approxi-
mation used in much of the earlier work described 8.

As background to the forthcoming calculations we need tarhe subscripts that are used to distinguish between the
introduce several propagators, where by a propagator wgropagators in Eq$3.1), (3.3), and(3.4) refer to the number
mean the probability that the random walker ig @t time+  of boundaries. Because the produigt7/3)1,(7/3) will ap-
starting from a specified point. The propagator for a nearesipear so frequently in later calculations we henceforth replace
neighbor random walk on a translationally invariant, i.e., un-the product by a function to be denoted Itfy; 7) defined by
bounded, simple cubic lattice will be denoted gy(r, 7).

This is the probability that a random walker initiallyGis at T T
r at time . Taking account the possibility of internal absorp- '(P? §) _|x(§) ly
tion this propagator can be shown to have the fH2@

A. Representation of the propagators

T

3] (3.5

This function can be shown to be approximately Gaussian at

T T T - :
—aLtu)r | L it long times by using the same argument that leads to Eq.
go(r,7)=e I« 3)Iy<3>lz(3). (3.2 (3.2,
By using the asymptotic expansion QI(TB). for 7—oo it B. Probability of never reaching the depthZ
can be shown thagq(r,7) can be approximated by the ) .
Gaussian function The simplest problem asks for the probability that the

maximum depth is less thahconditional on reachingp,0)
3 |32 3r2 at time 7. We will, in fact, calculate the probability that the
go(r,r)w(z—) ex;{— >V (3.2 photon never reaches the deh conditional on reaching
T T (p,0) at time 7. This will be denoted bywy(Z|p,7). This
2 2 2 o ) ) . . _ probability can be found from the joint probability-
wherer“=x"+y“+2z° This equation will be valid for dis- rohapility density that the random walker does not vsit

H 1/2 H
tances such thatis of the order ofr~' or less. By keeping _7 4nd is later absorbed 4p,0) during the time interval

higher-order terms in expansions of the Bessel functions ong_ 7+d7). It is assumed in all the following calculations
can establish that the Gaussian form in this last equatio&ét the random walker’s initial position i©,1), which al-
breaks down at times for whiah=0O(r). The breakdown of |4y ys to drop the initial position as an argument. The re-

the Gaussian approximation is to be expected because thgireq relation between the conditional and joint probability-
photons whose distance increases linearly with time are babrobability density is

listic photons. Since the Gaussian structure of Bp) is a

consequence of the central-limit theorem we expect this sort vo(Z,p,7)
of a breakdown to occur in the tails of the curve. Because of vo(Z|p,7)= Vo piT)
the lattice structure, Eq3.1) is only symmetric with respect oL
to interchanges ik andy or to changes in sign of these gjncey (c,p, 7)d7 is just the probability that the random
variables. The limiting behavior in E43.2) shows that ra- \yaiker is absorbed dip,0) betweenr and 7+d7 in a semi-

dial symmetry only appears at times long enough so that thgfinite medium. To exclude the possibility that degZhis
number of ballistic photons is negligible. Numerical calcula- yeyer reached by photons that are later detected, we put an
tions that suggest the validity of the assumption of radialabsorbing boundary at that depth and gs&,7) [Eq. (3.3]

(3.6

symmetry are to be found if20]. . as the propagator to calculate the denominatorgd, 7;Z)
When the absorbing boundary &t 0 and the initial po- [Eqg. (3.4] to calculate the numerator of E(8.6).
sition of the random walker,=(0,0,1) are taken into ac- The probability density o(c,p,7) is just

count Eq.(3.1) is replaced by

3
P 3

d
|1(§) ae (3.7

—a (1+v)7 T
©, P, =e I ’
vo(%,p,7) Jo 3 ¢

ol -1l

- - which follows by reasoning that in order for the random
I 1.0 =]. 3.3 walker to reachp,0) during (7,7+d7) it must have reached
y z 3 ( ) . .
(p,1) at time {<7, paused for a timer—¢&, then made a
] ] o o ) single step ta(p,0) with a probability equal to 1/6. During
Since the aim of our analysis is to derive information relatecinat time it must not have been absorbed internally. The nu-
to visits to the levelz=Z, we will also need an expression merator in Eq(3.6) takes a slightly more complicated form
for the propagator when there are absorbing boundaries bofecause the propagatog,(r,7) replaces the function
atz=0 andz=Z. This has been shown to be equal to 1,(&/3)/& in the integral in Eq(3.7). One finds that

T T
91(f17|"0):e_(1+”)7|x(§) Iy(§)

Z T
— -1
_6;e ( +V)7'|X(_

3/ 3

2 Z-1 1 r
Galr. 710 =5 e<l”>flx(§ uy(g) 3, ez vol(Zp7)= fo Wr—B0yrE2)dE (39

X sin

4 Iz i i i ici -
™ O)Sin(ﬂ- ) (3.4 which, together with Eq(3.7), provides an explicit expres

z 'z sion for the conditional probability o(Z|p,7) in the time
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domain. The integral can be evaluated and leads to an ex- or
pression fory(Z|p,7) that has the form
1 0.8 -‘
e T TP INE LT el
z-1 . . S
szl sinz(%J) fOTI(p; g) exp{gcos(%”dg. Tl
(3.9 0z -

Notice that this is independent of the absorption parameter

which follows from our conditioning the random walk to be 00 ‘ ' ‘ ' ‘

absorbed at a point on the surface rather than internally. An

analysis of cw experiments requires finding ng(Z,p, 7)

but rather the photon intensity integrated over all time, FIG. 2. Curves of the probability that lev@ is never visited

vao(Z,p, 7)dr. conditional on reaching some point of the trapping surface at a
While the evaluation of Eq3.9) requires that the term in dimensior_lless time. The curves are plotted as a function of the

the denominator be integrated numerically, it is possible tdraPping timer.

derive a relatively simple expression for the total intensity of

light emerging from the surface at timethat never reached Where\ can be any fixed parameter less tharSince both
the depthZ. This is the numerator and denominator of €8.9) contain similar

integrals we conclude thaty(Z|p,7) is almost independent
of p. Detailed numerical calculations indicate that #¥ 3

T

UO(Z'T):EP vo(Z|p,7). (310 the error due to the assumption of isotropy is generally less
than 5%. Figure 2 shows curves of(Z|7) plotted as a
This can be simplified by making use of the identity function of 7 for Z=5 andZ=7, which reinforces the obvi-

ous point that as the observation timéncreases, the prob-
ability that a random walker has not reached a given level

o)

X;m L(7/3) = exp(7/3), (31D pefore reaching the surface must decrease.
which, together with Eq93.9) and (3.10), yields The probability of reachimy Z k times
“(14w)r Z-1 | ef2+ ot} k=1. In the remainder of this section we derive an expres-
== > st =] ——— sion for a joint Fourier-Laplace transform af.(Z,p,7),
vo(Z,7) Si - . 8 i
Z = Z | 2+cogmjl/Z) wherev,(Z,p,7)d7 is the probability that the deptd has

(3.12 been reached by the random walker exakttimes before it

The associated conditional probability that the random> absorbed ap,0) during the time interval ¢, 7+d). We

walker has not reached the depitconditional on reaching will_show that the joint Fourier-Laplace transform of
. . vi(Z,p,7) can be related to that of the expected number of
the surface at time is

visits to levelZ. It is instructive, although not strictly neces-
vo(Z,7) sary, to first analyze the case lof=1 because one form of

& TF 7762 (£/3)dEIE (3.13  the expression for the joint Fourier-Laplace transform of
0 ! vi(Z,p,7) for k>1 is proportional to the joint transform of

vo(Z|7)=

An interesting consequence of the representation if&g ~ vu(Z.p7). _ _ _

is that after a short timeo(Z|p, 7) becomes almost indepen- , AN expression fow,(Z,p,7) is obtained by accounting
dent of p so that for all practical purposeso(Z|p,7) for a sequence of five events, which we write symbolically as
~vo(Z|7). To see why this should be so we observe that for , , ,

fixed p and larger one can approximate the produ¢p; 7/3) (0,1)=(p",2=1)=(p" . 2)=(p". 2= 1)=(p,1) = (p,0),

by (3.16
7\ 3e?2™® wherep’ can be any point in théx,y) plane. It should be
I p; 317 o0 (3.14 understood that once the photon reache< it never pen-

etrates to any greater depth nor does it move around in the
which is seen to be independentmfSince a Bessel function planez=Z. The second, third, and last transition in Eq.
of the form I,(&/3) increases nearly exponentially that  (3.16 each occur with a probability of 1/6, the total time
large enough values of this parameter we can, for examplgonsumed in making these transitions being described by a

write the denominator of E¢3.9) as probability densityy5(7), which is calculated in terms of the
probability density for the time of a single steg(7). The

fTI € | £ dé (3 207 ef dé~ 3 32 e relationship is most succinctly written in terms of the
o \P 313 E T\ 20 |, P2 =122 7 Laplace transform ofi(t), which will be denoted byy(s)

(3.19 =1/(1+s). The required relation is/3(s)=4>(s) so that
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the transitions §',Z2—1)—(p’,2)—(p',Z—1) and (,1) and the subsequent Laplace transform is readily found. Fol-
—(p,0) are accounted for in the Laplace transform domairiowing this set of substitutions we find that
by multiplying by a termy(s)/216. 521
We must next account for the transitions between sites at B _< EPINEE
z=1 andz=Z-1. The propagators that do so are Go(@2—1, stv)= Z ,Zl (=1

(0,1)—(p',Z—1):9,(p',Z—1,7]0,1) " Sir?(mj/2)
(3.17) s+1+v—1Li[c+cogmj/Z)]

(3.23
These considerations yield the following expression for, ) . L .
v(Z.p.7): in which c=cosw;+cosw,. If this relation is substituted

into Eq.(3.21 the resulting set of transforms can be inverted
exactly, leading to an expression fe{(Z,p,r) as

(p".Z-1)—(p,):92(p,1,7]p",Z-1).

1 o o )
vl(Z,p,T)=2—162 fo dTlfO defo d73ipa(71)
p

e*(l+V)T r g
Z,,=—f —2|<;—)N dé,
X Ga(p' Z— 1,75]0.DG(p Lirsl 0 Z— 1) 2 A L TS

(3.29
X 8(711+ 1o+ 13— 7). (3.18
whereN(¢) is
Observe that the lattice is translationally invariant in any _— . ,
plane perpendicular te and that the random walk is isotro- N = S Lyt elé3)cosmjiZ) _ g(él3codmj'1Z)
pic in any plane parallel to the surface. This allows us to (§)—_ _,:1( ) cod mj/Z)—cod 7] '1Z)
invoke the transformation )
AT
gZ(p11!72|p,12_1)292(1)_’),!2_1!72|0! 1)! XSInZ 7) SInZ(T) ' (323
(3.19

, , ) The conditional probability 1(Z|p,7) is found by dividing
which can be used to transform E(B.18 into a spatial Eq. (3.24 by Eq. (3.7). Because the factqw appears only
convolution integral. The delta function constraint is equiva-because of the factotép; £/3) in the numerator and denomi-
lent to a convolution in the domain. _ nator of the resulting expression we might expect that the
_In order to further simplify Eq(3.18 we introduce the  yonandence op is a relatively weak one. This turns out to
joint Fourier-Laplace transform afy(Z,p,7) defined by be correct provided that=20. To test this conjecture we

. compared the cases=(3,4) with (5,0) finding that atr
01(Z,0,5)=> ei‘*"”f e 5, (Z,p,7)d7.  (3.20 =10 the relative discrepancy am.ounted to 6.2%r=al0 it
P 0 amounted to 1.5%, and at=30 it amounted to 0.4%. A
R similar comparison for6,8) and (10,0 showed thatr=10
By the transformg,(w,Z—15s) we mean F,L.[92(p.Z  the relative discrepancy was 17.2%,rat 20 it amounted to
—1,7|0,1)] where F,{-} denotes the two-dimensional Fou- 2 3% and atr=30 it amounted to 0.3%. This suggests that
rier transform with the transform parameter vectorand for =30 it is reasonable to approximatel(z|p’ 7—) by
LA} is a Laplace transform with a transform parameter . (z|p,7)~v,(Z|7) with an insignificant error except at
Notice that our use of a Beer’s law approximation is readﬂyvery large values of the distange
incorporated into the Laplace transform formalism by replac- k>1. To treat the case in which=2Z is visited exactly
ing s on the right-hand side by+ v. This means that calcu- K(>1) times it will be necessary to work in terms of trans-
lations can be carried for the case of no internal absorptiofgrms. The details of doing so are presented in the subse-
without loss of generality and the facter " inserted at the  quent analysis. In the case considered here the cycle in Eq.

conclusion of any calculation. (3.16) is replaced by
Having introduced a transform formalism we find for the
transform of Eq.(3.18 (0,1)—(p1,2)—(p2,Z)—"—(px,Z)—(px,Z— 1)
—(p.)—(p,0) (3.29

R 1 - N
01(Z,0,8) = 57 (s+1)[Go( 0.2~ 1, s+ v)]2. _ o |
where thep; are arbitrary points in théx,y) plane. Notice

(32D that any transition of the formp(,Z) —(p,41,Z) allows the
random walk to either travel at levels above or beldwx-
8ept for the first and last visits to that plane. We must there-
fore account for components of the cycle of the form
e(pi ,Z)—(pi11,Z). Since sites in anyx,y) plane are trans-
lationally invariant we can, without loss of generality,
® choose p;=0 and, for convenience of notation sef,
2 eloX| (g)=gf cose (3.22 =p’'. To keep track of the exact number of visits to le¥el

X . . . . . .
X=—o it is necessary to introduce a set of first passage time

This transform can be evaluated exactly since it is possible t
find an exact expression fgs(w,Z—1, s). The calculation
of the two-dimensional Fourier transform makes use of th
identity
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probabilities {F(Tj)(p’,Z|0,Z), j=12,..k—1} where It_ is awkward to work with_ the functiom, but this expres-
FO)(p’,2|0,Z)d7 is the probability that, starting from Sion can be reformulated in terms of a more convenient re-
(0, Z), a random walker reaches=Z for the jth time at a Iatlo_n in terms of the joint tr_ansform_of th_e expecte_d number
point p’ in the x,y plane at some time during the interval of visits to the levelZ. Thls quantity will be designated
(r,7+d7). The jth passage probabilities can be found by E(Z,®.s) and can be written as

recursion from

_ . E(Z,,s+v)= 2 ki(Z,w,5+7v)
FIp Zloz)-3 [ R Zloz) o
p” 0

" _ ﬁl(Z,w,s-f— V) (3 32
XF_.(p'\2|p"2)dr [1-FY (©,2]0,2)]2
=> T|:<i,>(p~,2|0,z) so that Eq(3.31) can be rewritten as
p/r 0 T

1 0(Z @5+ v)=[FY (0,202)] [1-FY (0,2]0,2)]
X F(TfT,(p’ -p'Z

0,z)dr’,

(3.27
. . . T ishi %
where we have invoked the property of translational invari- hus, establishing the dependencewq(Z,w.s) on k for

. . ) . . eneralk requires being able to find expressions for, and
ance in the plane to pass from the first line of this equation tg itabl qr ximati gt the t ¢ rpﬁgl) n§|00£ an
the second. Since the recursion relation is a convolution i"'a0'€ approximations 1o, the transfor +i(@,2]0.2)

both space and time, it assumes a simpler form in terms dt"d E(Z,e,s+v). A further consequence of E¢3.33 is
joint Fourier-Laplace transforms defined analogously to Eqthat we can express the joint transform of the second mo-
(3.20. Let IA:Q)(w,Z 0,Z) denote the transform of ment,S(Z,w,_s+ v)_, in terms ofE(Z,w,s+ v). By su_mming
F(,j)(p’,Zlo,Z). The recursion step in Eq3.27) is then the geometric series that comes from Eg}32 we find
equivalent to %

S(Z, 0,5+ v) =k§}o k% (Z, 0,5+ v)

XE(Z, 0,5+ v). (3.33

FI™Y(w,2]0, 2)=FV(®,2]0, Z)F(w,Z|0, %) ]

3.2 .

1+FY (@,2]0,2) -

= ~1 E(Z,w,5+ ).
1-FY (@,2]0,2)

FO(0,2]0, 2)=[FM(@,2|0, 2)],  (3.29 (3.34

or

which is required for calculating the transformwfZ,p,7). A derivation in detail of the representation f@(Z, ,S
The cycle scheme in E3.26) can be decomposed into a +») is given in [25]. Expressions for the transforms of

sum of three contributions higher-order moments can also be expressed just in terms of
the functions that appear in E¢3.34 because of the geo-
C:: (O)—(p1,Z2—1)—(p1,2) metric form ofp,(Z,w,s+ v) in Eq. (3.31).
Cyo: (p2,2)——(p«.2), C. An evaluation of F(’(w,2[0,2)
; = (1
Cs: (p.Z=1)—=(pD)—(p.0), The Fourier-Laplace transforf{"(,Z|0,Z) can be cal-

culated in terms of the transform of the propagator
allowing us to abbreviate the sequenceCas»C,—C3. In 91(p,Z,7/0,Z) by invoking the relation
this symbolic scheme&,; takes the photon from its initial

position to 'Fhe plam_z:Z for the first time. The propagator 91(p,Z,70,2)= P 7+2 JTF?)(P"ZMZ)
corresponding t&, is ‘ o Jo

F& Yy, Zlp,,2)=F* Y(p—p,2/02) (3.30 X0u(pZ,7=Elp' 2)de
so that, according to gqs.zg, the equivalent in the trans- = 3,08 T+2 J-T|:<§l>(p',z|o,z)
form domain is just{F! (,Z|0, Z)]“"*. The Fourier- o J0
Laplace transform of the propagator Gy is just g;(w,Z Xgi(p—p'.Z,7—£|0,2)d¢,  (3.39

—1,5s+7|0,1)(s+ v)/6 and the one corresponding @& is
0,(w,Z— 1,5+ v|0,1)%(s+ v)/36. The product of these two Wwhere we have made use of the translational invariance that

factors is equal t@ ,(Z,®,s) as can be seen from E(.21) holds in any(x,y) plane. On taking the joint transform of the
so thatv,(Z,w,s) can be expressed as identity in Eq.(3.395 and solving fongl)(w,Z|O,Z) we find

1
(s+1)01(®,Z,5/0,2)’

0(Z, w5+ 1)=[FY (,2]0,2)1 11(Z,@,5+1).

(3.31 F(0.2|0,2)=1-

(3.39
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which is the final building block required for the evaluation inverting just a two-dimensional Fourier transform.

of Eg. (3.3). An appeal to the explicit formula for The first restriction is thaZ be large enough so that the
91(p,Z,7/0,Z) in Eq. (3.9 as well as the identity in Eqg. results are practically unaffected by the presence of a bound-
(3.22 yields an expression fay,(w,Z,s|0,Z), which is ary. A lattice spacing for biological media is approximately
equal to 1 mm. In practical applications involving biological
media we can therefore safely assume #hath, restricting

0i(@,Z,5+v[0.2)= \/? the penetrations to 5 mm or more since otherwise boundary
854179 effects can be quite significant. This restriction justifies our

1 2z ignoring the second term in brackets in Eg.37) since it is

x| 1— ) ] dominated by the factor 1 that appears in the brackets.
<3a5+y+ \/9as+,, 1 As a second approximations we restrict ourselves to the

(3.37) consideration of distances to the detector, which satisfies the
' condition p?=p- p>1. This restriction is needed to satisfy
in which the parameted,. , is the physically motivated requirement that details of lattice
structure should not appear in the final result. This restriction

c in the space domain is equivalent to
as+,,=1+s+ V—§, (338)

13) —wl-l- a)2<1 (3.42
where, as beforeg=cosw;+cosw,. With these exact re-
sults in hand, we can return to the problem of evaluatin
vi(Z,@,5+ v) for the cw experiment. If we define the func- 1 w2

tions a,~ 3 +v+ 5 (3.43

1 _ Joa2_1)\2Z — J932_
=1-(3a,~V9a,~1)*, p=v9a,~1 (339 to lowest order inw. The restriction to larg& allows us to
approximate to the parametatsand 8 in Eq. (3.39 as fol-

d’n the Fourier domain, allowing us to rewrite E®.38 as

then Eq.(3.33 is equivalent to

lows:
. 68%(1—a)[3(1+v)a— Bl " e
= _ 2 272 . An—2ZNw“+6v
e e = T narer 349 1-a=(3a,~yoa,~1)F~e =T,
which provides a basis for deriving both exact results and B Vo + 6V~1— _ Vo?+6v
approximations to these results. 3(1+v) 3(1+v) € 3(1+v) |
In the final step numerical results can be found by numeri- (3.44

cally integrating the two-dimensional integral S ) ) )
where, for many biological tissues of interest the dimension-

1 w - e poy2 less absorption parametelis quite small; a value of around
vi(Z,p,v)= (2m)2 Y Z,o,v)e d°p. 0.01 is a typical order of magnitude6].
(3.41) Taking all of these approximations into account we can

approximate ta(Z,w,v) in terms of a sum of three terms:
These were evaluated by using an FFT routine with a grid of
64X 64 points. In the following subsection we present some - 6 - 27+ (k=1)/[3(1+ )] N 1[3(1+ )]
v (Z,w,v)~——U Yi[1-2U Y

of the results obtained by a numerically integrating the last Y 1+v

equation, and finally comparing them to approximations de- A

rived from our exact results. +y2sl (3.49
in which

D. Approximations

All of the analysis to this point has been aimed at deriving U=0(Z,0,v)=e 22V +6v, (3.46
exact results. All of these have been given in the joint-
transform domain. It is possible, in principle, to derive re-In order to invert Eq.(3.49 it is necessary to invert the
sults in the space-time domain by numerically inverting Eq.Fourier transform of terms of the fortd™.
(3.41 with respect to bothw and s. However, enough is Because our assumptions produce what is essentially a
known about the order of magnitude of parameters in theontinuum limit, the Fourier series may be replaced by a
context of biological media to introduce approximations al-Fourier transform. Further, since the transforms depend only
lowing one to derive some qualitative implications from theon the magnitudes and not the full vectorw the function
analytical results. vi(Z,p,v) will be a function of the magnitude. This allows

To begin with we derive a usable approximation for theys to write the inverse transform um(w) as
k-dependent terfiFY(w,Z]0,Z) 1%~ that appears in the ex-
act expression for the joint transform in E8.31). This will
be done by restricting the values Afand p to be large and
by considering the cw experiment, which allows us toset
=0 in that equation thereby reducing the problem to that ofwhich gives

1 [ -
Un(p)~5— fo wJo(wp)U™(w)dw, (3.47)
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FIG. 3. Plot of numerically generated values of J§g,(5|p)] FIG. 4. Numerically generated values of the average number of

(circles as a function ok, compared to the approximation in Eq. visits to depthZ in a cw experiment plotted as a function of the
(3.48 (lines). The functionv(5|p) is the probability thaz=5 has  distance from the input point at which the photon emerges at the
been visiteck times by a photon later absorbed at a distagmé®m trapping surface. The circles were obtained numerically while the
the point at which photons enter the tissue. In generating the curvaegashed lines indicate approximations obtainefll®] and[25]. The

the dimensionless Beer's law parameter was taken tp=b6.02. dimensionless Beer's law parameter is equal to 0.02.
U, )%ﬂ 1 n V6w improves as the target depth is increased. Figure 5 shows
mP) = o [ (m2+ p2) %2 " mZ+ p2 plots of the standard deviation of the number of visits to
TCETS) level Z as a function of the distange Further exploration of
xex — V6r(m™+p9)]. (348 the data seems to suggest that the coefficient of variation,

a(k|p)/{k|p) decreases gsincreases. This is to be expected
on the consideration that as the radial distance increases, the
photon trajectory tends to spend more time at points close to
the surface thereby minimizing the possibility of internal ab-
v(Z,p,v)=~ a0 [Uoz+ k-13a+wi(p) sorption.

Equation(3.49 indicates thaw,(Z,p,v) can be written in
terms of these functions as

—2Uoz 31+ o1 (P) F Uozy (kv i3 ()]
(3.49

from which our numerical results will be calculated. Notice N the present paper we have produced results on the sta-
that this approximation depends only on the magnitpde tistical properties of the depth prlobed.by a photqn in a cw
rather than on the full vectqs, which indicates that we are Measurement. The results are given in the Fourier-Laplace
in the largep regime. This has been shown to be a reasondomain, and potentially allows us to examine these statistical
ably good approximation if20]. properties as a function of both space and time. We have
In Fig. 3 we compare values of lggv.(5|p)] to those only discussed results for the cw experiments, which can be
obtained from Eq(3.49 by plotting them as a function &  obtained by simply setting the Laplace transform parameter
for different values ofp with x=0.02. The figure suggests €equal to zero. However, the results can equally well be used
that the accuracy of the approximation improves with in-
creasing values op as has already been anticipated. Al- 15

E. Some concluding remarks

though there is a systematic deviation between the approxi g ® 8
mation and numerically calculated resultspat 3 the error g 8 B,
in using Eq.(3.49 is still less than 15% at the lowest value 6 ° ® o
of k and less than that at the intermediate values in the rang 10 . ° o .
shown. In Fig. 4 we compare numerical values of the ex- _ z3 o, 7 " .
pected value of the number of visits to depthas found =2 . ° g .
numerically, against the formula o 75 ° .
5 I o °
6U5z(p) oLt
Klp)= —F— 3.5 o . Z7
o L]
3 . * 1 1 i j
given in[25]. The agreement between results produced by ° s 10 s %

this approximation and the numerical results is seen from the-
data shown in the figure to be quite good at lower values ot
p at all of the values oF. The accuracy of the approximation  FIG. 5. Standard deviation of the number of visits to depth
is seen to decrease asis increased. Again, the accuracy generated numerically.

p
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to investigate analogous properties for time-gated experiextremely short times due to the neglect of anisotropic scat-
ments by a further inversion, most likely numerical, of thetering effects.
Laplace transform. We hope to present this extension at

some later date. It is also easy to analyze frequency-domain
spectroscopy27,28 using the present formalism by replac-

ing the parametes by i\ 7, where\ is the dimensionless
frequency. J.M. and J.M.P. gratefully acknowledge support from Di-

While the model that forms the basis of this work is reccion General de Investigacion Cientifica y Tecnica under
somewhat specialized we would expect it to furnish reliableContract No. PB096-0188. G.H.W. gratefully acknowledges
results except possibly at the very earliest times. The use dhe hospitality of the University of Barcelona where much of
diffusion-based models or random walk models is suspect ahis work was done.
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